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THE LONGITUDINAL STABILITY OF ELASTIC SWEPT WINGS AT SUPERSONIC SPEED
By C. W. Frick and R. S. Cacas

SUMMARY

The longitudinal stability characteristics of elastic swept
wings of high aspect ratio experiencing bending and torsional
deformations are calculated for supersonic speed by the appli-
cation of linearized lifting-surface theory. A parabolic wing
deflection curve is assumed and the analysis is simplified by
a number of structural approzimations. The method is thereby
limited in application to wings of high aspect ratio for which
the root effects are small. Expressions for the lift, pitching-
moment, and span load distribution characteristics are derived
in terms of the elastic properties of the wing; namely, the design
stress, the modulus of elasticity, the shearing modulus, and the
mazximum design load factor. The analysis applies to wings
with leading edges swept behind the Mach lines. In aoll cases,
however, the trailing edge is sonic or supersonic. Application
of the method of analysis to wings with leading edges swept
ahead of the Mach lines is discussed.

The resulls of numerical calculations for a wing of aspect
ratio 3.2 and 60° sweepback are presented for a Mack number
of 1.414 and for incompressible flow. The effects of wing
elasticity on the lift-curve slope, moment-curce slope, and neu-
tral-point position are shown. The results indicate that the
primary varigble involved in aeroelastic phenomena is the
dynamic pressure and that the influence of the flight Mach
number is small for wings swept bekind the Mach lines. .

INTRODUCTION

In reference 1, R. T. Jones has shown that supersonic
flight may be attained with a reasonable degree of efficiency
through the use of swept wings of high aspect ratio. The
use of sweepback, however, involves many problems of
stability and control, not the least of which are associated
with the aerodynamic effects of the elastic deformation of
the airplane structure. In particular, the longitudinal
stability of the aircraft may be affected to & large degree
since the bending and torsional deformations of the wing
mey shift the center of pressure of the lift forward an appre-
ciable distance.

These aeroelastic phenomens occur under those flight
conditions where the magnitude and/or the spanwise varia-
tion of the elastic deformation of the wing wvaries with
angle of attack. Aeroelastic effects may therefore occur
either in accelerated flight at constant dynamic pressure or,
under certain conditions, in steady level flight with varying
dynemic pressure. In the latter case, if the loading due to
twist or camber is different than the loading due to change
of angle of attack, the trim change due to elastic deformation
of the wing in steady level flight varies with the dynamic

pressure and influences the stability of the airplane as

indicated by the position of the control stick as a function
of airspeed.!

In solving aeroelastic problems, since the interrelation of
the structural and aerodynamiec characteristics of the wing
results in mathematical complexity, it is usually necessary
to compromise to some extent either the structural or the
aerodynamic aspects of the problem to obtain a solution.
In the present analysis, the structural characteristics of the
wing are compromised to the extent that the form of the
deflection curve is assumed. This assumption permits the
application of supersonic lifting-surface theory to the deter-

mination of the load distribution, the lift, and the pitching-

moment characteristics of elastic wings. Additional analysis
is necessary to determine whether it is better to use more
rigorous aerodynamic theory in aeroelastic computations, as
in the present report, or to use a more complete structural
theory as in recent work by Diederich (reference 2) and
Miles (reference 3).

SYMBOLS

x;,7n Cartesian coordinates
z,y transformed Cartesian ecoordinates in terms of the
semispan dimension, §
&% 2,y coordinates of the apex of any superposed lifting
sector
s distance in the ¥, direction from the root section to the
intersection of the flexural axis and the tip Mach
cone
*  distance along the flexural axis from the root section
to the intersection of the flexural axis and the tip
Mach cone
distance measured from the. root section along the .
fiexural axis
spanwise distance in y direction from the root section
to the center of load on the half wing
- wing area
taper ratio, ratio of tip chord to root chord
average chord
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ol & ¥ N

JSedy

Sedy

¢ local chord parallel to the plane of symmetry

¢  toot chord parallel fo the plane of symmetry in terms
of the span dimension, s

AR aspeect ratio .

A angle of sweepback of the flexural axis

6 slope of the flexural axis in & vertical plane passing
through the flexural axis

n maximum load factor

M  bending moment at any point on the flexural axis

M, Dbending moment at the root section of the wing beam

mean aerodynamic chord

1 This particular aeroelastic characteristic is not considered in the present report which is
concerned primarily with sccelerated flight. Further, the wing is considered to be weightless
so that the ameliorating influence of the distributed mass of the wing is not taken into sccount
in estimating the aeroelastic characteristies.
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torsional moment at any point on the flexural axis
torsional moment at the root section of the wing beam
modulus of elasticity for the wing beam material
shearing modulus for the wing beam material

moment of inertis of the wing beam

torsional stiffness constant

distance between the flexural axis and the center of

o QY

pressure of the sectional lift in terms of the local.

chord
Omaz Maximum design stress
d, maximum thickness of the wing at the root sec.mon
a  angle of attack of the root section of the wing
ar incremental angle of attack at any spanwise station of
the wing
a; angle of attack of the wing section at any spanwise
station
a, angle of attack of the root section at which maximum
load factor is developed
vVM®—1 where M is the free-stream Mach number
B times the cotangent of the angle of sweepback of the
wing leading edge
m, @ times the cotangent of the angle of sweepback of the
wing trailing edge
t B times the cotangent of the angle of sweepback of a

I™®

ray from the apex of any superposed lifting sector-

2  complete elliptic integral of the second kind with
modulus (+/1—m?)

W  airplane weight

W . .

5 Wing loading

q dyhamic pressure (% sz) , where pis the mass density
and V the velocity of the free stream

A?'p lifting pressure coefficient

! load per unit span

¢;  section lift coefﬁ(nent

L lift

O, lift coefﬁclent( S)

Cy, lift coefficient at maximum load factor

m; section pitching moment of a wing section about the
apex of the wing
C» pitching-moment coefficient about the apex of the wing
in terms of the mean aerodynamic chord and the
wing area
the rate of change of lift coefficient with the angle of
attack of the root section
Cn,, the rate of change of pitching-moment coefficient with
the angle of attack of the root section
GMC the rate of change of pitching-moment coefficient with
the lift coefficient

ANALYSIS _

WING WITH A SUBSONIC LEADING EDGE
In the following analysis, for convenience, the aerodynamic
loading due to bending and that due to torsion are first

treated separately. Expressions for the combined effects ot
bending and torsion are derived later.
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Bending.—The aerodynamic twist 2 due to bending of &
streamwise section of an elastic swept wing under accelerated
flight conditions is a function of the applied load and the
elastic characteristics of the wing beam. In order to arrive
at a solution for the aerodynamic properties of the wing
without becoming involved in laborious graphical analysis,
some simplifying approximations must be made regarding
the elastic properties of the wing.

In a strict sense, a swept wing of conventional structural
design cannot be considered to have a flexural axis. For
wings of high aspect mt.io, however, it will be assumed that
a flexural axis exists, since this assumption permits the use
of simple beam theory and 1ntroduces only a small conserva-
tive error.

For the purpose of analysis, the root section of the wing
beam is assumed to be the extension of the wing beam on a
plane perpendicular to the flexual axis and passing through
the intersection of the flexural axis and the streamwise root

“~-Plane of beam
root section

,
e "‘n;D /s
Mach lines

FiGURE 1.—Geometric characteristics of the wing beam.

section. (See fig. 1.) This simplification of the beam analy-
sis is similar to that of reference 4. The length of the wing
beam ¢’ is taken as the distance along the flexural axis from
the root to the intersection of the flexural axis and the tip
Mach cone. The semispan s of the wing is taken as extend-
ing from the root section to the intersection of the flexural
axis and the tip Mach cone in a direction perpendicular to
the plane of symmetry. The portion of the wing lying

- within the tip Mach cone is ignored since, as shown in

1 The change in camber of the airfoil sections due to the distortlon of the wing surface is,
of course, ignored.
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F1cURE 2—Coordinate system for caleulation of characteristics of elastic wings.

reference 5, very little load is carried in this region and the
analysis is thereby simplified.

The coordinate system is selected as shown in figure 2.
The origin of the coordinate system is placed at the apex of
the wing, the positive branch of the r; axis lying downstream.

The mathematical treatment may be made less tedious by
transforming and nondimensionalizing the coordinates so
that in the following analysis

=2

T
=3
root chord
=
s
In general, at both subsonic and supersonic speeds, selec-
tion of the wing plan form for low drag leads to a combination
of spanwise loading and spanwise distribution of the bending
resistance in the wing beam such that the wing deflection
curve is essentially parabolic. (The ratio of M to I is con-
stant across the span.) The deflection curve deviates
appreciably from s parabola only if the aeroelastic effects
experienced by the wing are very large.
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Since the deflection curve of the flexural axis is assumed to
be parabolic, the slope of the flexural axis is

=M
—ErY

where 9 is measured along the flexural axis.
The incremental angle of attack of streamwise sections of
the wing is related to the slope of the flexural axis as

ap=—0sin A

The slope of the flexural axis in nondimensional transformed
coordinates may be written as

=L 8
“FEIBcos AY

The incremental angle of attack of any streamwise section of
the elastic wing is then '

@=—%—:§—l§-y fan A

and the total angle of attack of any streamwise section is
a,=a—%— % y tan A (1)

where « is the angle of attack of the root section of the wing.
Equation (1) gives the magnitude and distribution of twist
across the span of the wing if the magnitude of M/ETI is
known.

The distribution of pressure over the elastic wing due to
twist may be determined by applying known conical-flow
solutions for supersonic flow. In the linearized theory, the
principle of superposition of various solutions may be used to
satisfy the particular boundary conditions of the problem.
For the elastic wing, the flow field may be considered to
consist of the superposition of two distinet flow fields:

1. The flow sbout a flat rigid wing at an angle of attack
equal to the angle of attack of the root section.

2. The flow about a twisted wing for which the angle of
attack at the root is zero.

The solution for the first flow field is given in references 6 -

and 7; the second flow field can be obtained by determining
the solution for a differential twist de, at one station and
integrating this solution across the span.

The solution for the pressure distribution corresponding
to a differential twist must meet the following boundary
conditions (fig. 3):

1. Outboard of the station of twist, the angle of attack
must be constant and equal to the differential twist.

2. Inboard of the station of twist, the angle of attack of
the surface must be zero.

3. Between the swept leading edge and the Mach cone,
no lifting pressures may exist.
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Fi16URE 3.—The houndary conditions and pressure distribution for the conical-low solution for differential twist.

The conical-flow solution corresponding to these boundary
conditions is that for a special lifting sector given by Lager-
strom in reference 8 and is expressed in the notation of the
present report as .

Ap_8a m*?  [1+¢ @)
g PrmFIVm—t '

where ¢ defines a ray from the apex of the sector.

Figure 3 shows both a sketch of the boundary conditions
to be met by this solution and a plot of the pressure distri-
bution given by equation (2).

The induced pressure resulting from twist due to bending
of the elastic wing may be found by integrating across the
span of the wing. This integration corresponds to the
superposition of an infinite number of the lifting sectors

along the span, each sector having an infinitesimal angle of

attack do,.
The pressure due to twist is then given by
(@) 8 md? Ms fﬂu 1-|-t d’q
¢ o= " Prm+i EI®
where
t_y—ﬂ_ (y—"?)

T—E& mz—n

The z and ¢ coordinates of the apex of any superposed sector
are § 1
The integration must be carried out from the root section

of the wing =0 to the value of y=1n, corresponding to the
last superposed sector, the Mach cone of which encompasses
the point #,% under consideration. The value of 4, is found
by placing ¢ equal to —1 and solving for 4.

[

no=m—?i—1 @+y)

The integration yields at any point z,7 the pressure due
to twist

Ap mbP2
( ) 362 (m+1)2‘°““EI (@+9)

To this expression must be added the conjugate term due to
the elastic deformation of the opposite wing panel. The
conjugate term may be obtained by substituting -y for y.
Then -

(-

ma:y

5/2 T
~5s g o0 A7 | oy

2=y (4)

(x_y) m‘l"y

It should be noted that the addition of the conjugate
terms adds some very small lifting pressure in the region
between the wing leading edge and the Mach cone where no
lifting pressure may exist. These pressures may be canceled
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by the superposition of constant lift sectors as noted in
reference 9. Since these exfraneous pressures, on the
average, amount to about 3 percent of the average pressure
coefficient over the adjacent wing surface and, since elimi-
nation of those pressures would change the pressures over
the surface only about one-half of 1 percent, it seems that
in view of the additional complication involved the can-
cellation of these pressures is unwarranted.

The total lifting pressure for the elastic wing at an angle
of attack is then obtained by adding to equation (4) the
solution for the flat lifting wing. For the elastic wing, then

Ap 4m’a

16 ms? zty
T T e ) iy [(x y)\/

+E—y) \/,,’f;%'y] (5)

Examination of this equation shows that the relationship
between M/ET and « must be established before the pressure

Ap dmia 32 m? tan A Tmex
¢y 3T W

The load per unit span can be obtained from an integration
of equation (6) with respect to x along any streamwise station
(y-constant),

¥+mey
(™ %)
aq - SJ_;I_ ( q =const.dx

The integration is carried out from the leading edge of the
wing, :1:—-— to the trailing edge x—y+ £0 ond yields

I 4m?%sa

- na%EE 2 i6) @)

fI( ) 332,_. (m_{_l)zt

The functions f:(¥) and f;(¥) are given in the appendix since
they are somewhat unwieldy.

The lift coefficient may be obtained by an integration of

equation (7), spanwise from root to tip.

8
sC=% [ Lay

The integration yields 3

_ 28 [4mPa 32 ms? Tmax § @
8C=5 |5z I3 miD " AE Za

r] ©

The constants F; and F; are given by equations in the
appendix.

This equation may be used to determine the angle of attack
at maximum load factor e, which is needed in the foregoing
equations:

_BZ1r8q, 32 m" Tmez 8
= AmiF,| 28 n s 3ﬁ3r(m+1)2tan A E d, | O

The pitching-moment characteristics of the elastic wing may

3 It may be noted that the ratio ¢2/S is essentially the same as one-fourth aspeet ratio and
that the parameter sfd: is direetly related to #'/d, & common structural eriterion.

distribution can be calculated. Since for wings with para-
bolic deflection. curves the maximum stress occurs af the
point of maximum thickness, usually the root, the maximum
stress occu;ring at maximum load factor is

_<k d
Tmaxr™ T )

and, since the bending moment at any point on the span is a
linear function of the angle of attack,

M_20ma
I~ 4, a

where g,4; is the design stress at maximum load factor, d,
is the thickness of the root section and o, is the angle of
attack at maximum load factor; an expression for «, is
derived later.

The equation for the pressure distribution may then be
written as

Omax § &

2 2| gy o)y 2L | ®

be determined by an integration of the pressure distribution
given by equation (6).

For any spanwise station, the section pitching moment
about the apex of the wing is

ytmico
mg
f ( J=const
This integration yields
Ms__ 5 4mPa 32 m¥? a',,uLz s « ]
q § Bz f3(y) 3[327’ (m_[_ 1)2 — e tan A f&(y)

@0

The functions f3(y) and f,(y) are given in the appendix.

The total pitching-moment coefficient about the apex of
the wing in terms of the mean aerodynamic chord is found
by integration across the span,

2s ("8 m,

2 4 mia 32 m? Cmaz S &
ﬁC’,,,,———S—% 135 F3—3ﬁ21r(m—l-1)2tan A E da ] an
or .

_ 28T4m*F, 32 mi*? \ Omaz 8§ Fy
BCr.=—5%| 5z 3pm IRV E Gl 12

The constants F; and F; which are functions of the aspect
ratio, taper, and sweepback are given in the appendix.
Torsion.—The previous analysis has ignored the effects of
wing twist due to torsion. The solutions obtained are, in
reality, those for wings of infinite torsional stiffness. In
general, since the flexural axis (or torsion center) is behind
the center of pressure at all spanwise stations of the wing,
the twist of the wing due to torsion will tend to compensate
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for the twist due to bending. For wings having large angles
of sweepback such as are necessary for efficient supersonic
flight, the aerodynamic twist due to torsion has been calcu-
lated to be about 15 to 20 percent of the twist due {o bending
(for thin wings). In such cases, the effect of the torsional
deformation on the spanwise loading may be neglected in
calculating the torsional moment. Equation (7) may be
utilized in. the calculation of the torsional moment in this
instance. A complex simultaneous solution is thereby
avoided.

An expressxon for the torsional moment at the root section
of the wing beam (perpendicular to the elastic axis) may be
obtained by assuming that the distance from the center of
pressure to the flexural axis for any section of the wing is a
constant percentage of the local chord. Then

B%’=s ¢ (cos A) ﬁﬂécdy

where ¢ is the local streamwise chord given by the equation

e=§¢y [1 —(1—N) %:I

and N denotes the taper ratio of the wing and { the distance

from the center of pressure of the section lift to the flexural
axis in terms of the streamwise chord. The function describ-

ing the spanwise loading I/g is given by equation (7).
The equation for the torsional moment at the root may be
written as

T _ o "’£|:_ _ z:l
ﬁq—s rcocosAJ;q 1—(1 x)ﬂ dy

T _ tlg L
ﬁ—é—--—szycocosA[ﬁ qdy (I )\)f yd’y]

As will be shown later, it is convenient to derive the ratio of
the torsional moment at the root to the bending moment at

the root. The bending moment at the root is given as
M, & Ly
B ¢ Bcos Af qydy
and
T,
—E=§' o cos? A I:—_é—i— (1—)\)] (13)
where
[
- Jo g?%

and corresponds to the spanwise center of pressure for the
load on the half wing. The value of ¥ may be determined
by a mechanical or analytical intergration of equation (7).
‘When the assumption is made that the twist due to torsion
varies linearly across the span (or that the ratio 7/GJ is
constant across the spa,n), the incremental angle of attack
of any section of the wing due to torsional deflection may be

written as
cos A Ts Tsy
*="pg GIJYTGIB
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or
_Msy(TILE
T EI g\MJ.G

and by adding this expression to the angle of twist due to
bending (equation (1)) the total angle of twist of any section

is
Msy LEN T,
G=*TFT 8 [tan 4 (ZT‘ Tf,]

$ Omar @ Y

ay=a— zd, P tan A—( )ﬂ-] (14b)

Combined bending and torsion.—Expressions for the
aerodynamic properties of swept wings experiencing both
bending and torsional deformation may be obtained from
equations (6) to (12) if tan A is replaced by

ILE\ T,
[ton 2 (76) 2]
The equation for the angle of attack at maximum load
factor for combined bending and torsion is then

(142)

or _

_ B2 (S 32 m” gmeg S [,
a"'"4m2F1§282 0""-+3ﬁ31r mF¥1? E d, [ts.n A
CULENT,
RCE
where -

= {6, [% — (1—)\)] cos? A

In applying the foregoing analysis to a specific wing, it is
convenient to use the equations to obtain the ratio of Cp,
or Cy, for the elastic wing to the value for the rigid wing.
Multiplying this ratio by the value of Cy, or Cn, for the rigid
wing as determined by the complete theory wherein the
region within the Mach cone of the tip, and so forth, is
considered, will then give more accurate parameters for the
elastic wing. Then

L _4m’s ‘M2 a,,.,,,sfz(y)l: (L ) :I
a8 - 3,32 mIn E fan < o)L
(16)
Cr 8 Z+m qF
Yelastic '\ Omaz S i
Oza,,.m.fl 3prm+1) E da, [t“n A_<J_G' M, |F,
(17)

(&) — -
m“dau’c 8 E'Jm Cmaz I‘
Om‘,riﬂ;“l 3Brmt 1) E dyay ,,[t*m“ ( ) .|,
(18)

In using the preceding equations, it is necessary to solve for
a,. This, in turn, involves finding the ratio I,/Af, which is
determined by the parameter Y (usuelly has a value of about
0.40).

A solution of the combined bending and torsional deforme-
tion effects can be obtained by assuming a value of ¥, solving
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for a,, and checking the value of ¥ from a moment and ares
integration of a plot of equation (16) to see if & second ap-
proximation is required to determine «, more accurately.

The previous equations apply primarily to fiat lifting wings
or to twisted and cambered wings for which the loading due
to twist and camber is the same essentially as the loading
due to change in angle of attack. For wings with somewhat
arbitrary camber and/or twist, these equations apply to all
accelerated flight conditions. A solution for the aeroelastic
characteristics in steady level flight for such wings must
involve a consideration of the effects of the loading due to
the known arbitrary twist.

WING WITH A SUPERSONIC LEADING EDGE

The foregoing analysis has treated wings with the leading
edge swept behind the Mach cone. The same method,
however, may be applied to wings swept ahead of the Mach
cone. In this case, however, the expression for the pressure
field for the incremental twist at any spanwise station, cor-
responding to equation (2), is given by reference 10 as the
real part of

Ap _4a m

cos—t L=
g Br 1,'m,2 1

=l o
where ¢, ¢, and m are as defined for equation (2).

Expressions for the pressure distribution, lift, moment,
and load distribution may be obtained in the seme manner
as for a wing with a subsonic leading edge although the inte-
grations are more involved.

DISCUSSION
SUPERSONIC LIFTING-SURFACE THEORY

The results of the foregoing analysis are best illustrated
by applying them to a specific wing. For this purpose, the
wing shown in figure 4 was selected, having the geometric

L E =/0—5 Xlas
o G = 3.85x10¢ .
Ve . Iy = 067
. d./s = 0.052 S
AN, A =025 s~ L
o . § =020 e o

FIGURE 4—8ketch of the wing used in the calealations.
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FreURE 5.—A comparison of the span load distributions for the rigid and the elastic wings
in accelerated flight. AL, 1.414; omaz, 30,000 pounds per square inch; n W7S, 150 pounds per
square foot; ¢, 281.2 pounds per square foot.

and structural material characteristics given in the table in
the figure. The calculations were made for various velues
of the parameter nW/S and for two values of the maximum
design. stress.*

Span load distributions for the wing are shown in figure 5
for a Mach number of 1.414, a value of »W/S of 150 pounds
per square foot, a design stress of 30,000 pounds per square
inch, and a dynamic pressure of 211 pounds per square foot
which corresponds to flight at 60,000 feet altitude. The load
distribution eurves of part (a) of figure 5 are for the same
angle of attack of the root section and show that the elasticity
of the wing results in an appreciable decrease in Lift-curve
slope. In this case, the reduction experienced by the elastic
wing amounts to 15 percent of the value for the rigid wing
of the same plan form. Part (b) of figure 5 shows the load
distribution curves for constant total lift coefficient. These
load-distributions are of significance in illustrating how the
change in span load distribution due to elasticity may be
expected to shift the longitudinal center of pressure forward.

4 Qaleulations show that the wing has su.ﬂiclenl: depth to withstand the meximum loading
assumed without faflure.
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COMPARISON OF AFROELASTIC EFFECTS AT SUPERSOKIC SPEED WITH
INCOMPRESSIBLE FLOW SOLUTIONS

In calculating lift and stability characteristics of elastic
wings, it should be noted that errors resulting from assuming
the extent of the wing beam as given in figure 1 and from
ignoring the lift within the tip Mach cone may be minimized
by using the analytical expressions which give the ratio of
lift-curve slope or the ratio of moment-curve slope for the
elastic wing to that for the rigid wing. These ratios may be
used with the rigorous values of Cn, and Cy from reference 5
to obtain accurate values of Cp, and Cy, for the elastic wing.

Such ratios have been computed for the wing shown in
figure 4 as functions of the dynamiec pressure at a flight
Mach number of 1.414, For comparison, the same ratios
have been computed as functions of the dynamic pressure
for incompressible flow by the theory of reference 11. Fig-
ures 6 and 7 show the results of these calculations which
were made for two values of_ n W/S of 150 and 300 pounds
per square foot and two values of design stress, 3¢,000 and
45,000 pounds per square inch. Figure 8 shows the shift in
neutral point ¢ due to wing elasticity as calculated from the
data of figures 6 and 7. '

The results indicate that the adverse effects of the aero-
elastic deformation of the wing are a little more severe at
supersonic speed. At constant dynamic pressure, the differ-
ences in the aeroelastic effects as computed by incompressible
flow theory and by supersonic lifting-surface theory are found
to be due largely to the fact that the center of pressure of
the sectional lift is farther forward at subsonic speed, result-
ing in a difference in torsional deformation which compen-

§ Neutral point is defined as_the position of- ﬁ;;m:xter of gravity along .th.e mee.n aerodynanic
chord for neutral stability.
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sates somewhat for the bending deformation. The compar-
ison indicates that the dynamic pressure is the primary
variable involved in determining the aeroelastic character-
istics, at least for wings swept behind the Mach lines.

In regard to the range of application of the equations,
calculations made using more rigorous structural theory with
simple strip theory show that the method of the present
report may be expected to give accurate estimates of aero-
elastic effects as great as, for instance, a 30-percent loss in
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lift-curve slope. Within such limits it is expected that the
estimate of the neutral point shift due to elasticity willjbe
much more accurate than for analyses using elementary
aerodynamic loading.

AMES AErONAUTICAL LABORATORY,
NATIONAL ADvisory COMMITTEE FOR AKRONATUTICS,
Morrerr Frewp, Carir.,, Dee. 3, 1948.

APPENDIX
MATHEMATICAL DERIVATION OF LOADING FUNCTIONS AND PLAN-FORM CONSTANTS

The functions fi (), f2(v), fs (%), and f.(y) and the constants
B, F;, F;, F, which appear in equations (7) to (18) of the
text are given in this apperdix. Analytical expressions for
the constants F3, F,, F; are found to be very long and tedious
to use. It may prove easier to evaluate these constants by
graphical integration of the corresponding integral equations.

The functions fi(y) and #(y) were developed from the
following integral:

¥mey

—l-=s f i (A—E dx
q v d /y=const. .
m

ymey
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£.) = =
@) f_ =

from which

which yields
1 2 vy 2
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W=, ™ etiyfai et f " eyl e
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The constants F; and F; are evaluated as follows:
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and

8
Fz:Jo S dy
which yields for m,s%1
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Then
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where
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